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Abstract

Dialogue systems have many applications such as customer
support or question answering. Typically they have been lim-
ited to shallow single turn interactions. However more ad-
vanced applications such as career coaching or planning a
trip require a much more complex multi-turn dialogue. Cur-
rent limitations of conversational systems have made it diffi-
cult to support applications that require personalization, cus-
tomization and context dependent interactions. We tackle this
challenging problem by using domain-independent AI plan-
ning to automatically create dialogue plans, customized to
guide a dialogue towards achieving a given goal. The input
includes a library of atomic dialogue actions, an initial state
of the dialogue, and a goal. Dialogue plans are plugged into
a dialogue system capable to orchestrate their execution. Use
cases demonstrate the viability of the approach. Our work on
dialogue planning has been integrated into a product, and it is
in the process of being deployed into another.

1 Introduction
Dialogue agents are becoming increasingly pervasive across
many industries. There is also a recognized demand for
goal-oriented agents that are capable of bridging several
services to assist human users in multi-turn dialogue (Or-
tiz 2018). It is natural, then, to view the generation of dia-
logue agents through the lens of a technology well-suited for
multi-step and goal-oriented settings: automated planning.

State-of-the-art dialogue systems typically can fall into
two categories, dialogue trees and conversation learn-
ers. ELIZA is a first dialogue system that used dialogue
trees (Weizenbaum 1966). In ELIZA and more recent tree-
based dialogue systems, the conversation is structured by a
complex series of branches with options depending on the
user responses, and the dialogue at each branching node is
hard coded. Dialogue trees can rapidly become unwieldy as
the choices become more complex. Additionally, a great deal
of repetition may exist where similar dialogue interactions
may be required at different points in the conversation.

Conversation learners use machine learning to compute
the next response from examples or historical interactions
(Ilievski et al. 2018; Gao et al. 2018). They allow the quick
development of a complex dialogue without the laborious
task of constructing a dialogue tree. Drawbacks include the

lack of control from the application owner and the poten-
tially unpredictable results. In certain domains, uncertainty
and the risk of erroneous responses may be acceptable, but in
domains such as health, finance and human resources (HR)
we require guarantees and predictability of results.

A modern dialogue agent should integrate important prop-
erties such as: multi-turn, goal-oriented dialogues; calls to
external services whose output is needed in the dialogue; and
handling contingencies. Informally, the latter covers the fact
that, at certain points in a dialogue, the conversation could
steer in more than one direction. For instance, the user could
accept or reject a suggestion from the agent, and the follow-
up dialogue could be very different in each case.

We introduce an approach to constructing dialogue agents
with AI planning. Our dialogue plans feature the properties
mentioned above. These properties are not necessarily new,
but our novelty stems from computing such dialogue plans
automatically, using domain-independent planning.

This allows to create plans tailored to specific scenarios
(e.g., focused on achieving a given goal). The input includes
a library of actions representing individual steps in a dia-
logue. These are the building blocks used to construct dia-
logue plans. As typical in AI planning, the input further con-
tains a problem instance, which states the initial state and the
goal of the dialogue plan to compute. The system computes
a dialogue plan that starts from the initial state and continues
until the goal is achieved.

A library of actions can be used to generate a range of
dialogue plans, and a given subset of actions can be used
across several domains. For instance, the user can ask about
the weather in a range of domains, such as trip planning and
family event planning. The ability to automatically compute
dialogue plans allows us to easily maintain deployed dia-
logue systems. Fixing a bug, or slightly modifying the be-
haviour of an action further implies the need to recreate all
dialogue plans impacted by the changes. Manually fixing a
collection of plans could be tedious and error prone. Avoid-
ing this is a key advantage to our approach.

Use cases show the feasability and the scalability of the
approach. In addition, our work has been integrated into a
human resources product, and it is being added to another
product, for career coaching.



2 Preliminaries
We introduce basic concepts needed in a dialogue system
capable to integrate our dialogue plans. In the second part of
this section we overview fully observable non-deterministic
planning (FOND). This is the main planning approach we
use, together with elements of contingent planning.

Dialogue In a dialogue, user utterances are classified into
so-called intents. For example, a statement such as “I won-
der how the weather is in Paris” could be classified into an
intent such as #ASKED-ABOUT-WEATHER. We assume that
intents are predefined (when the system is designed), and the
system is pretrained for intent classification.

Entities are variables defined in a dialogue system. Be-
sides general-purpose variables, such as places (e.g., Paris),
people names, dates and numbers, designers can define en-
tities specific to the domain at hand, with a range of val-
ues that an entity can take. A given value could possibly
be defined in multiple ways, as a list of synonyms. Value
assignments to entities can automatically be recognized in
a user utterance, using Natural Language Understanding
(NLU) (Manning and Schütze 1999; Jurafsky and Martin
2000; Florian et al. 2010). User utterances are annotated
with recognized intents and entity instantiations. The sam-
ple utterance presented earlier would be annotated with both
the intent mentioned, and with a variable assignment such as
@PLACE = PARIS. As mentioned earlier, we allow calls to
external services in the middle of a dialogue. Calls to exter-
nal services are annotated with their inputs and outputs.

Such annotations will allow us to build more advanced
context information. Informally, the context contains infor-
mation that is relevant at a given point in a dialogue. See
details in Section 4.

Fully Observable Non-deterministic Planning A FOND
problem is defined by a set of fluents that can be true or false
in the environment, an initial state represented as a set of flu-
ents, a set of non-deterministic actions and a goal condition
that must hold at the end of the plan.

The FOND representation is similar to classical planning,
except that in FOND actions can have multiple effects (see
also (Geffner and Bonet 2013) for additional details).

A non-deterministic action consists of a precondition that
must be satisfied for the action to be applicable and a set of
outcomes, one of which will be used during execution. Each
outcome is a set of fluents or their negation, indicating if the
fluent should be added or deleted from the state of the world.

Exactly one outcome occurs when an action is executed,
and thus a solution to a FOND problem must adequately
handle every possible outcome. Among several equivalent
ways to define a solution, we will use one resembles more
closely our dialogue plans.

Consider a new action Done whose precondition satis-
fies the goal. A solution to a FOND problem is a directed
graph (N , E) where N is a set of nodes and E is a set of
directed edges. Each node n ∈ N is associated with an ac-
tion (including Done) and has one outgoing directed edge
for each outcome of its corresponding action. E is the union
of all edges across all nodes. Nodes labeled by the Done
action have no outgoing edges. We call these leaf nodes. A

A: ask-checkin-
luggage

A: ask-how-manyA: Done

A: set-luggage-checkin

A: Done

[have-number]

[ ]

Figure 1: Toy dialogue plan. The plan has two goal states,
shown as double-bordered boxes. Edge formulas shown for
only one set of non-deterministic edges, to avoid clutter.

solution contains at least one leaf node and exactly one root
node without any incoming edges.

The action associated with the root node must be applica-
ble in the initial state. Reachable states are recursively de-
fined by applying the action in a state reached at node n
(starting with the initial state and root node, respectively).
The outcome that occurs during execution dictates both the
following state of the world, and the following node for the
solution to proceed to. A solution must additionally have the
following properties: for every reachable state and node pair
(s, n), the action corresponding to n must be applicable in
s. For every reachable node n, some leaf node n′ can be
reached through some selection of outcomes.

In summary, a solution is a directed graph where the nodes
correspond to actions the agent takes and edges correspond
to how the uncertain environment responds. There must al-
ways be some path to arrive at a goal node.

3 Dialogue Plans
Definition 1. A dialogue plan is a structure 〈V, T , v0, G〉.
(V, T ) is a directed graph, with V being the nodes and T
being the edges. One unique node, labeled v0, represents the
initial node of the dialogue. G 6= ∅ is the set of nodes with no
outgoing edges, called the goal nodes. Each node has an ac-
tion label represented as a string. When a node has multiple
outgoing edges, each such an edge has a Boolean formula
where atoms are fluents from a set F .

We use FOND planning to generate dialogue plans. Com-
puting dialogue plans with AI planning provides a mech-
anism to construct the formulas associated to edges. As the
multiple edges originating from a node are non-deterministic
effects of a given action, we use the outcome of each effect
as the formula of the corresponding edge.

Figure 1 shows a toy example of a dialogue plan inspired
from a trip planning application. In this example, the agent
asks the user whether the agent should check in any luggage



in an upcoming flight. The plan captures four possible op-
tions for the user’s answer: 1) no luggage should be checked
in, in which case the dialogue can progress to the goal state
at the left; 2) the user gives a positive reply, and provides
the number of suitcases (e.g., “Yes, 2 pieces”); 3) the user
gives a positive reply, without specifying the number; and 4)
the user gives an irrelevant response, in which case the agent
asks again. In case 2, the dialogue can progress to calling an
external service that marks the corresponding field in a flight
booking form, after which the dialogue progresses to a goal
state. In case 3 the agent asks about the number. If a num-
ber is given, the dialogue progresses to case 2. Otherwise,
the agent would ask again for a number. For simplicity, we
skip details such as interrupting the dialogue after a finite
number of iterations, in case that the user keeps providing
meaningless answers.

4 Architecture Overview
Here, we present an architecture that integrates dialogue
plans into an overall dialogue system, starting with the key
definition required for maintaining the dialogue status.

Definition 2 (Context). Given a set of variables W , a con-
text is a partial instantiation of W . In other words, a context
contains instantiations to a subset of the variables in W .

As mentioned, the context contains information available
in the dialogue system at a given time. Variables in W can
include intents, entities, and variables to store the outputs
of calls to external services (i.e., variables instantiated as
described in Section 2). The context can contain additional
variables, with rules about how and when to instantiate them.
For instance, a trip planning domain can define variables
such as LOCATION-DEST and LOCATION-ORIG. During the
dialogue, the context can assign the automatically recog-
nized value of the @PLACE entity to either LOCATION-DEST
or LOCATION-ORIG, depending on the state of the dialogue.

Each goal that can be considered in some dialogue plan
has a corresponding intent in the dialogue system, called a
top-level intent. User utterances classified into a top-level
intent trigger the execution of a dialogue plan with the cor-
responding goal.

Recall that a dialogue plan obtained from a planning sys-
tem is a directed graph. A unique edge originating from
a node represents a deterministic transition, and multiple
edges from a given node represent the branches of a non-
deterministic action. Each action in the plan (represented as
a string) needs to be mapped into an actual code to execute.
We call the code corresponding to an action a transformer.
As such, each dialogue trace modelled in the dialogue plan
has a corresponding sequence of transformers to call. As
a dialogue progresses along a given trace, the context can
change after each step. For instance, analysing a user utter-
ance can lead to new entity instantiations. Likewise, calling
an external service leads to new output. A transformer can
consume context information (i.e., use context instantiations
as input) and produce context information (i.e., populate the
context with new instantiations). When the action at hand in-
volves calling an external service (e.g., call a career-pathway
recommender system), the corresponding transformer takes

as an argument the link to the API of the external service.
The transformer calls the external service with the input
at hand (e.g., user profile stored as a context variable) and
places the results in dedicated context variables.

Consider a node n in the plan, with multiple outgoing
edges, to a set of children nodes c1, . . . , cl. When the dia-
logue continues from a node with multiple outgoing edges
(branches), such as n, the execution needs to decide what
branch to choose. That is, we need a mechanism to observe
part of the dialogue state (context) and make a decision
based on that observation. At the end of applying the ac-
tion corresponding to node n, the context allows to infer the
current planning state.1 We use the current planning state,
the formulas defined for branches leading to the children
nodes c1, . . . , cl, and the previous planning state (when the
execution was at node n), to infer which branch should be
followed. We assume that the effects of exactly one branch
are consistent with the transition from the previous planning
state to the current one.

Consider the example presented in Figure 1. The node
corresponding to the action ASK-HOW-MANY has two out-
going branches, corresponding to two non-deterministic ef-
fects of whether the user provides a number or not. One
branch is a self loop with no effects (i.e., no number pro-
vided) and the other progresses to a different state, with the
number of luggage pieces given.

A deeper discussion on monitoring the execution of a plan
is beyond the scope of this paper.

5 A Planning Model for Dialogue
AI planning problems are often expressed in a domain-
independent language from the PDDL family. Our PDDL
models for different dialogue domains share some common-
alities in terms of the high-level design strategy. We present
lessons learned when designing dialogue planning models.

Choosing the Level of Abstraction in PDDL The avail-
ability of the context, separately from a dialogue plan, elim-
inates the need to explicitly model in the PDDL problem
description all objects (i.e., possible values of variables) that
could occur in a dialogue. This abstraction avoids an artifi-
cial blow up in the problem size, and in the solving effort.

Assume, for instance, that at some point in a trip planning
dialogue, the destination has been set. In the PDDL model-
ing, it is sufficient to encode that the destination is known,
with no need to explicitly name the destination. That is, we
use a predicate such as HAVE-LOCATION-DEST, as opposed
to HAVE-LOCATION-DEST ?LOC. The latter would have to
be instantiated into many grounded fluents, one for each pos-
sible destination. In contrast, the former is grounded into ex-
actly one instantiated fluent, with corresponding savings in
the problem size and difficulty.

A PDDL model abstracts away some, but not necessar-
ily all information included in the context. As mentioned in
Section 4, part of the predicates used in the PDDL model are

1To achieve this, each fluent from the planning problem is also
defined as a context variable, with a rule about how to instantiate
(evaluate) it to TRUE or FALSE.



mirrored with corresponding variables in the context, to be
able to decide on what branches to continue with the execu-
tion of a dialogue plan.

Basic Fluents Following the previous discussion on us-
ing the right level of abstraction, we introduce the following
types of fluents for the PDDL model:

OK-* To indicate if a Boolean flag holds true.
HAVE-* To indicate we have a context value.

MAYBE-* To indicate uncertainty of a context value.
GOAL Specially designated fluent for the goal.

For a context variable, such as LOCATION-DEST, the flu-
ents HAVE-LOCATION-DEST and MAYBE-LOCATION-DEST
make a 3-valued logic (at most one can be true). We found
the latter mode to be essential for tailored dialogue that re-
sponds appropriately to uncertain data (e.g., asking “You’ll
be traveling to Berlin, right?” instead of “Where will you be
traveling to?” when MAYBE-LOCATION-DEST holds and we
have some idea what the location should be).

The GOAL fluent captures the fact that we typically
achieve the dialogue goal by means of executing a particular
action (e.g., booking a trip or making a successful recom-
mendation). We elaborate on this further in Section 6.

Basic Actions We have identified two key action types that
are shared across the dialogue domains: dialogue actions and
service actions. The model could optionally include other
actions, such as an auxiliary action at the end of every plan,
to indicate the termination of the dialogue, but the two per-
vasive types are what we discuss.

Dialogue actions correspond to sending messages to the
end-user in a conversation. We assume that the executor of
a plan has a way to map a given dialogue action (along with
the current context) to an utterance that should be sent to the
end user. If the dialogue action has more than one outcome,
it is presumed to be a message that warrants a response from
the user, and the user’s response will correspond to the vari-
ous action outcomes.

In the deployed dialogue plans we have created, the ex-
ecution of a dialogue action sends the message to the end-
user using a common messaging protocol, and the response
in situations with more than one outcome is assessed using
off-the-shelf NLU technology (e.g., services for natural lan-
guage disambiguation and entity extraction). The effects of
an outcome for a dialogue action can encode whether vari-
ous types of information are available. Separately from the
dialogue plan, the context will store the actual values of
those types of information.

Eliciting information from the user is an important feature
in multi-turn, goal-oriented dialogues. Dedicated fluents en-
code whether a given type of information has successfully
been elicited. Fluents such as HAVE-EMPLOYEE-NAME (in
a HR dialogue where a manager can ask about the perfor-
mance of various team members) and HAVE-LOCATION-
DEST, mentioned earlier, are prime examples of this. Once
again, during execution, the context is updated to reflect the
actual values that have been acquired or modified.

The preconditions of a dialogue action dictate when such
an utterance or question would be posed to the user. For
example, querying a user’s destination location only makes

sense if we do not already have it. More subtly, an action
such as ASK-USER-DEST would be predicated on not hav-
ing MAYBE-LOCATION-DEST hold in the state, as we would
instead prefer the action CONFIRM-USER-DEST.

Service actions refer to the actions in the model that do not
directly correspond to messages that are sent to the end-user.
These include system checks that have multiple outcomes
associated (essentially embedding key components of logic
into the process of compiling the dialogue agent) or even
web API calls that may be required as part of the conversa-
tion. An example would be looking up the weather using an
online RESTful service. The outcomes of a service action
correspond to the possible responses we might expect and
wish to handle as part of the conversation.

The specific implementation details are beyond the scope
of this paper, but essential to a service action being used as
part of a plan, we assume that the executor is capable of mak-
ing the RESTful API calls (or similar such service actions),
and resolving the outcome. Part of this resolution process is
to update the context with new information as appropriate,
and maintain the corresponding state of the world from the
view of the planner’s abstraction.

It is worth emphasizing the role of the outcomes from
the dialogue designer’s perspective. There may be countless
ways that a user could respond to a question, and similarly
countless error codes that a RESTful endpoint might return.
However, the task of the dialogue designer is to only specify
the outcomes that contribute to changes in state and/or con-
versation. This means that a large variety of possible out-
comes are categorized together.

An example for the service action might be mapping all
error codes of the weather service into one NO-WEATHER-
SERVICE outcome. An example for a dialogue question
might be all of the ways the user could respond in the affir-
mative. It was a prevailing design philosophy of the dialogue
agent modelling that we should only consider the outcomes
that are required for conversation, and including a catch-all
outcome as needed when the response is unclear (e.g., when
the NLU cannot understand the end-user response).

6 Advanced PDDL Features
Having the base encoding in hand, we now describe some
of the advanced encoding features that we have identified
and deployed for the dialogue agents we have created. These
stem from common patterns observed in addressing the pain
points of dialogue designers.

Forced Followup Generally speaking, the declarative na-
ture of planning can offer massive savings to the process of
dialogue design (and we demonstrate as such later in Section
7). That said, there are some limited forms of imperative-
style specification that we found to be common in the do-
mains we have investigated. Almost exclusively, these took
the form of immediate followup functionality: examples in-
clude responding quickly with an affirmation, running a
complex service action with many outcomes after a particu-
lar response was received, etc. Here, we detail the modelling
strategy used for such situations.



Forced followup is a modelling feature that introduces
a new set of fluents that are incorporated into the actions
in a particular way. We use two new fluents: (1) FORCED-
FOLLOWUP-t indicates if there is a forced followup that
must occur of type t; and (2) FORCE-REASON-r indicates
what the reason is for the forced followup.

Examples we have considered for type t include DIA-
LOGUE (immediately respond with a message), CHECK (run
a system check), and ABORT (to abort the conversation and
hand off to a human operator). The type of forced followup
allows us to predicate some subset of the actions with the
ability to handle the forced followup. If only one action can
handle a particular type, then the model should ensure that
it is the only applicable action. We achieve this by having
the negation of all types that an action a cannot handle as a
precondition for a. For many of the actions, there will be no
type of forced followup that they can handle, which means
they have a negated precondition for every type (easily spec-
ified using quantified preconditions in PDDL).

We assume that actions which handle a particular type of
forced followup always remove the appropriate fluent as part
of their effects (i.e., the FORCED-FOLLOWUP-t is deleted in
every outcome of the action). This ensures that the remain-
ing actions in the domain are subsequently re-enabled.

The FORCE-REASON-r fluents in some sense mirror the
FORCED-FOLLOWUP-t fluents, as they are both added and
deleted at the same time, but they additionally provide a
higher fidelity to the followup mechanism. As a grounded
example, one of the domains (discussed later in Section 7)
uses DIALOGUE as a type for forced followup with reasons
spanning a range of errors (such as BAD-WEATHER, BAD-
DATES, etc), warnings (e.g., NO-WEATHER-SERVICE), and
affirmations (e.g., AFFIRM-OK). The action description in
the model makes use of the lifted representation for PDDL,
and thus only one action is needed to handle the range of
forced responses corresponding to each reason. The exam-
ple action schema for a forced followup of type dialogue
would be (HANDLE-FORCED-DIALOGUE ?R - REASON)

We found that the task of declaratively specifying a di-
alogue agent was greatly simplified by allowing for this
single-step imperative pattern to be used directly. It essen-
tially empowers the dialogue designer to specify the imme-
diate followup for key outcomes on certain actions, and ad-
ditionally had the benefit of simplifying the execution of the
dialogue plans (as utterances from the agent to the end-user
need not be placed on outcomes).

Handling Multiple Intents If desired, one can build a dia-
logue plan with a disjunctive goal. Such a plan would satisfy
any one of a collection of goals (top-level intents) considered
in the disjunctive goal. In such a case, we introduce addi-
tional auxiliary fluents and actions to address them: for each
intent i, we have a fluent INTENT-i that indicates if the user
has that intent, and a corresponding action ASSERT-INTENT-
i is introduced with the following properties:

1. Only applicable when both INTENT-i and the necessary
condition for intent i to be satisfied holds.

2. Adds the goal fluent GOAL as its only effect.

In the domains we have experienced, it is enough to as-
sume that only a single intent needs to be confirmed.

7 Use Cases
We evaluate our generic approach to computing dialogue
plans with AI planning in four domains: human resources,
career coaching, trip planning, and a synthetic domain. The
first two correspond to two products. The synthetic domain
allows to perform a more focused scalability evaluation.

Human Resources We present a HR application with dia-
logues related to employee professional performance. Regu-
lar employees could have a dialogue about their own perfor-
mance. In addition, a manager could have a chat about the
performance of any team member, and the team as a whole.

The performance is defined along a number of criteria
called capabilities, such as technical skills and knowledge.

In this domain, dialogue snippets can be partitioned into
three main categories: questions with static answers related
to the domain (e.g., “How can I use this tool?”); general-
purpose chitchat (e.g., “Hello”); and goal-oriented, multi-
turn conversations. The first two categories are simple snip-
pets of one question and one answer. The third one is han-
dled with the approach presented in this paper.

Goals considered in multi-turn dialogues include: (1) pre-
senting the performance rating of a given individual for a
given capability; (2) giving an explaination about the value
of a performance rating for an individual and a capability;
(3) recommending learning resources to improve the perfor-
mance of a given individual in a given capability; (4) pre-
senting the performance rating of a team for a given capa-
bility; (5) giving an explaination about the value of a perfor-
mance rating for a team and a capability; and (6) identify-
ing the strongest and the weakest performer in a team, for a
given capability.

Such goals often require a multi-turn conversation, for
person disambiguation and capability disambiguation. For
instance, a person name given in the user utterance is used
to identify a person record in the team member database. A
first name provided in a user utterance might correspond to
zero, one or several person records in the database. In the
first and the third case, the dialogue needs to continue with
disambiguating the person. Likewise, when no capability is
specified, or the capability is ambiguous, the dialogue needs
to disambiguate it.

An early implementation of the goal-oriented conversa-
tions used one Java program for goals 1 and 4; one Java
program for goals 2 and 5; one Java program for goal 3;
and one Java program for goal 6 (using a total of 3,702 lines
of code). These Java programs are essentially implementing
hard-coded dialogue plans. This is hard to maintain and to
extend to new goals, and the portability to a different domain
is very limited.

We have replaced such multiple individual Java apps,
based on hardcoded specific dialogue plans, with one single
application (using only 1,166 lines of code). The application
analyzes the goal at hand, identified from the intent of the
user utterance, and constructs a planning instance accord-
ingly. The instance can be fed into an off-the-shelf planning



Figure 2: Dialogue plan for career goals and pathways.

system to obtain a dialogue plan on demand. Alternatively,
dialogue plans can be precomputed and stored into a library,
indexed on the goals they address. The dialogue plan is exe-
cuted and monitored in the system.

Career Coaching We consider two dialogue goals in ca-
reer coaching: reaching a point where the user has eventu-
ally chosen a long-term career goal; and eventually chosing
a career pathway towards that goal. Thus, the system imple-
ments calls to two APIs: one for a career goal recommender,
and one for a pathway recommender. Each API implements
calls that provide: a list of recommendations; an explanation
associated with a given item (goal or pathway) included in
a recommendation; additional details about a given item in-
cluded in a recommendation.

For long-term career goals, a service call to a recom-
mender system provides a number of recommendations.
These are ordered, and the top three are presented to the user.
The user can choose a career goal, or request additional in-
formation (e.g., an explanation of why a given career goal
is included), or reject the career goals currently provided.
In the first case, the goal is achieved. In the second case,
additional information is provided and the dialogue contin-
ues recursively, from the state where the user is required to
choose between the three options again. In the third case,
additional information is elicited from the user, regarding
the reason of not liking any career goal. Based on the newly
elicited information, the short list of three recommendations
is re-computed, and the dialogue continues recursively.

Another dialogue plan focuses on helping the end user
choose a career pathway. Career pathways are computed
with a call to an external service. Pathways are presented
to the user, which can accept or reject the career pathway at
hand. In the former case, the goal is reached and the dialogue
concludes. In the latter case, information about the reason
of rejecting the pathway is elicited from the user. Potential
reasons can be related to a job role along the pathway, or
constraints associated with roles (e.g., the user might dislike
management roles). The context is updated, a career path-
way is recomputed, and the dialogue continues recursively.

Computing a career pathways towards a long-term career
goal requires the career goal as an input. As such, the two
dialogues could be chained in a sequence. They can also

Figure 3: Generated dialogue for the Trip Planning use case.

be generated as independent dialogue plans. Such variations
can easily be obtained with very small modifications in the
PDDL problem instance definition. For instance, if the goal
is to choose a career pathway, and a career goal is already
available in the initial state, there is no need to have the dia-
logue focused on choosing a career goal. Otherwise, the two
plans will automatically be chained in one larger dialogue
plan. Figure 2 illustrates this combined dialogue plan.

Trip Planning The goal of our trip planning system is to
provide booking services while considering weather situa-
tion relevant for the trip. The system needs to collect de-
parture and arrival destinations and date range of the trip.
We provide in the supplementary material the actual PDDL
domain and problem instance used to drive the dialogue. For
the previous two use cases, the PDDL specification is closed.

The system is requesting the trip parameters through
the natural dialogue and verifies their correctness (e.g. va-
lidity of provided locations). After enough information is
collected, the system uses an external call to check the
weather situation for the specified destination and dates. If
the weather is evaluated as inferior, the system informs the
user and suggests changing the trip parameters.

From the automated planning perspective, the interesting
aspect of this use case is handling the uncertainty of col-
lected system parameters. The uncertainty comes from two
sources: (1) the location recognition can be ambiguous due
to NLU errors; and (2) the system can hypothesize about ar-
rival and destination locations based on historical data and
the actual user location. This leads to the planner to con-
firming information with the user that it has some certainty
about, and soliciting information from scratch when it does
not have a sense as to what the true value is.

Figure 3 shows a high-level view of the generated dia-
logue plan that comes from a model with only nine actions.
The node symbols indicates the type of action that corre-
sponds to that part of the plan: either dialogue, API call,
or system action (the latter two being specific examples of
non-dialogue actions discussed in Section 5). Even in this
limited setting, we can observe how complex behaviour can
be captured in the generated dialogue agent from a simple
declarative specification.



Figure 4: Plot of ratio of Solution size and Model size

Scalability Analysis Scalability is a major advantage of
using a declarative representation for goal-oriented dialogue
agents. To demonstrate this empirically, we created synthetic
domains and problems mirroring the properties we observed
in the existing dialogue encodings of our three use cases
above. We measure the model size of the generated prob-
lems and solution size of the computed dialogue agents as
the number of unique actions used in the solution and the
total number of actions in the dialogue plan respectively.

We setup our experiments by populating a domain with
random non-deterministic actions and a problem with ran-
dom initial and goal states. Action precondition and effects
are generated through random sampling from a set of fluents.
We mirror the characteristics of actions inherent to a real di-
alogue system by: (1) keeping size of action preconditions
within the range of 1-5 inclusive; (2) randomly sampling the
effect type as either select (exactly one of 2-5 fluents will
become true) or assign (1-4 fluents are randomly flipped);
(3) randomly sampling 1-5 fluents for the initial state; and
(4) randomly sampling 1-2 fluents for the goal state. As pa-
rameters to the random problem generator, we provide the
number of actions and fluents.

The two action types correspond to typical dialogue ac-
tions that we have encountered. The select action mirrors the
determination of one type of response the user could provide
(typically with a range of 2 to 5 possibilities). The assign
action mirrors dialogue actions where many aspects of the
context can be assessed simultaneously (and thus multiple
non-deterministic aspects are considered simultaneously).
We have additionally confirmed qualitatively that the gener-
ated plans appear to contain a similar structure as the known
dialogue plans (e.g., with the same expected plan length).

In total we generated 100 instances. Figure 4 shows a his-
togram of the ratio of solution size divided by model size.
In most of the instances, solution size is at least 4 times the
size of the model, and in extreme cases it can grow to 16
times the model size. This confirms our assertion that com-
plex dialogue systems can be efficiently designed with very
compact declarative representations.

8 Related Work
In the past, Kuijpers and Dockx (1998) presented an ap-
proach where a pre-existing library of plans can be used by

an agent in a dialogue. Steedman and Petrick (2007) advo-
cated the use of AI planning to facilitate mixed-initiative col-
laborative discourse. More recently, (Nothdurft et al. 2015)
described a system capable of explaining the decisions of the
planning system to the user. Ortiz (2018) presented a holis-
tic approach to building conversational assistants which in-
cludes a planning component to assist the interaction with
human users. However, none of these previous approaches
employ AI planning to generate customized dialog plans.

Garoufi and Koller (2010) showed recently how to gener-
ate whole sentences word-by-word with AI planning tech-
niques and described an approach to generate multi-turn
navigational commands to be followed by a human user in a
conversational interface to achieve a specified goal.

Black, Coles, and Bernardini (2014) developed a formal-
ism that describes persuasion dialogues as state transitions
in a planning domain. In this setup, an automated planner
was able to find optimal persuasion strategies. However, the
execution monitoring is greatly simplified due to the abstract
nature of simulated dialogues.

Petrick and Foster (2013) considered execution monitor-
ing issues that arise from non-determinism of real-world di-
alogue systems. Their proposed execution monitor expects
deterministic behavior of actions in the world and rebuilds
the plan if inconsistencies between measurements and the
expectations are observed (via various sensors). In contrast,
our execution monitor accounts for non-determinism explic-
itly within the generated plan. Therefore, our plans can be
static and easier to debug.

Another direction of research is focused on using (deep)
reinforcement learning for end-to-end dialogue generation
(Dhingra et al. 2017; Peng et al. 2018). In contrast to our
model-based approach, training these data centric systems
is costly and requires many interactions with human users.

The work that perhaps is the closest in spirit with ours
is that by (Williams 2007; Thomson et al. 2007; Bui et
al. 2010) who focus on using (factored) POMDPs to man-
age spoken dialogue systems in various domains. However,
these systems, which are quite sensitive to the uncertainty
inherent in the spoken utterances, require considerable train-
ing to learn good policies and thus drive the dialogue.

9 Summary
Dialogue agents capable of handling multi-turn, goal-
oriented conversations are becoming increasingly important
across a range of domains, including human resources, ca-
reer coaching, and personal assistants. We have presented
an approach to constructing dialogue plans automatically.
Given a library of individual actions available, our system
produces dialogue plans customized to achieving a given
goal. Dialogue plans are further plugged into a dialogue sys-
tem that can orchestrate their execution during a conversa-
tion with a user. We have shown that our approach is viable
and scalable. Our work has been applied in one product, and
is in the process of being integrated into a second one.

Future work includes building dialogue agents in addi-
tional domains. Dynamically interleaving dialogue agents,
to allow the user to temporarily change the topic in the mid-
dle of a dialogue, is another important topic for future work.
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