
MAi: An Interface for Declarative Specification of Goal-Directed Dialogue Agents

Tathagata Chakraborti · Christian Muise · Shubham Agarwal · Luis A. Lastras · Yasaman Khazaeni
IBM Research AI, USA

{tchakra2, christian.muise, shubham.agarwal}@ibm.com, {lastrasl, yasaman.khazaeni}@us.ibm.com

Abstract
The state of the art of dialogue agents requires a lengthy design
process spanning months with experts in the loop who specify
complex conversation patterns manually. Our work proposes
a paradigm shift in bot design by adopting a declarative ap-
proach which composes the full dialog tree automatically. This
allows the designer to construct complex dialogue agents from
scratch and interact with them in a matter of hours. The demon-
stration will allow the audience to interact with this new design
paradigm and construct their own bots on the spot.

Current enterprise-level goal-directed dialogue agents require
significant expertise, time and effort to build (Sreedhar 2018).
The process usually requires domain experts to sit down with
engineers to construct complex interaction patterns in the
form of explicit dialogue trees. This process quickly becomes
intractable. Existing end-to-end solutions to chat-bots, on the
other hand, require little expertise to build (but a lot of data)
and offer little to no control over the operational properties of
the bot (Metz 2018). As a result, such data driven end-to-end
techniques have been predominantly demonstrated in non-
goal oriented settings. Especially in the context of design
of goal directed dialogue agents for tasks such as customer
support, we can conceive of the following desiderata:
• The bot-designer must be in control of the behavior of the

bot towards the end-users once it is deployed. This means
that the specification of the bot must be interpretable to
the designer, and also readily debuggable and editable as
desired by the designer.

• The bot designer should be able to easily connect actions
available to the bot to actionable system functions and API
endpoints in order to get its job done (for example, issue a
ticket or place an order).

• Finally, and perhaps most importantly, in order to be able to
support complex interaction patterns between the end-user
and the bot, the bot designer must be able to completely
describe the bot’s capabilities without having to manually
specify the entire dialog tree.

In the following sections, we describe in detail how our Model
Acquisition Interface (MAi) goes about making these capa-
bilities available to the bot designer by adopting a declara-
tive modeling paradigm. We anticipate that this modeling
paradigm will not only reduce the effort in building robust
dialogue agents for enterprise use, but also make the design
process of such bots more easily accessible to a wider range
of users (and thus to a wider range of uses).

Interactions on MAi
Declarative Specification The state of the art for the de-
sign of dialogue agents involves manual specification of the
entire dialog tree. This process is imperative, in having to
enumerate all sequences of possible bot behavior. We instead
propose a declarative modeling paradigm built on top of au-
tomated planning techniques (Ghallab, Nau, and Traverso
2004) that are uniquely suited declarative modeling – the bot
designer starts by putting themselves in the shoes of the agent
and conceives of variables that the bot needs to keep track
of and actions that the agent is capable of executing.

Variables These are either Booleans, arbitrary JSON
variables, or variable types defined as system entities in Wat-
son Assistant1 that may be extracted from user utterances. Ex-
amples of variables include credit card details (as a JSON dic-
tionary), Boolean flags determining whether certain pieces
of information have been acquired, and so on.

Actions Actions define capabilities of the bot. They op-
erate on the values of the variables defined above towards
achievement of its goals. Each action is defined from the per-
spective of the bot in terms of the information it requires to
perform the action and the possible outcomes of performing
that action. The structure of an action consists of:

• Needs are values – true or false – or status – known,
unknown or uncertain – of variables that need to hold
for the bot to be able to perform that action. For example,
the credit card details would need to be known before the
bot can place an order.

• Outcomes define a set of possible events that can occur
in response to the bot executing an action – e.g. if the bot
calls an API endpoint, it may either receive some data back
indicating success or it may receive a failure message. This
can be modeled in terms of two different outcomes. When
the bot is compiled before deployment, the AI planning
techniques in the back-end compose the full dialogue tree
while considering all possible outcomes. After deployment,
at the time of execution, only one of the outcomes occur
when an action is performed – the job of the execution
monitor is to identify and react to this outcome.

• Updates define how the values of different variables
change for each outcome. For example, if the user responds
with the credit card details, then the values of the variable

1ibm.biz/sys-entities



corresponding to credit card details are updated, or the
status of the order may be updated on after calling an API
endpoint as described above. The manner of assignment
largely depends on the type of an action, described next.

Action Types MAi allows three types of actions that per-
form different roles during an interaction with the end user.
All of them follow the action structure introduced previously,
in addition to extra features typical to a particular action type.
• Dialogue actions are performed directly with the user via

conversation. The designer outlines how the bot expresses
itself (such as in asking for credit card details) and possible
user utterances in response for each possible outcome.

• Logic actions are internal to the bot and are used to main-
tain state information (for example, in setting credit card
details to known once the bot determines membership
in loyalty program). The designer can specify under what
(logical) conditions each outcome occurs and in what order.
The ability to design these actions is unique to this design
paradigm – internal actions are not accessible in chat logs
and are thus inaccessible to end-to-end systems.

• Cloudfunction actions allow the bot to respond to action-
able items. This is crucial to the development of goal-
oriented dialogue agents in domains such as customer
support where the agent needs to pull data from a user’s ac-
count, set information such as usernames, passwords, etc.
issue tickets, book orders, and so on. These API endpoints
still need to be implemented by a developer – however,
MAi provides pathways to simulate these endpoints in situ
so that the designer can chat with the bot immediately.

For dialogue actions, information extracted from the specified
user utterances (using classifiers automatically trained using
Watson Assistant services) can make updates to variables
in each possible outcome. For cloudfunction actions, such
updates can come from the response of the API endpoints.

Miscellaneous Features
The Meta-Writer MAi incorporates a status bar at the top
that provides an (optimistic) estimate of how far along the de-
sign process the domain-writer has progressed. This is done
with the help of a meta-writer that casts the domain writ-
ing process itself as a planning problem. This meta-problem
models the minimum requirements of a dialogue model given
the nature of the domain specification and monitors for ful-
fillment of those basic requirements as the domain writer is
constructing the bot, before the bot can be launched. If there
are outstanding items to be modeled, it suggests possible
design items to the user who can directly add them into the
specification of the bot – for example, if an action needs a
particular value of a variable, then there must be some update
of some outcome of another action that produces it.

Follow-ups, Confirmations and Slots MAi houses special
pathways to (1) fill slots (i.e. query for missing information);
(2) confirm values of variables when the bot is uncertain; (3)
start the conversation with a particular action; (4) end the
conversation on a particular outcome; or (5) force the next
action as a follow-up to a particular outcome. Some of these
features hark back to the imperative process of bot design
and are left in as syntactic sugar to further streamline the de-
sign process as well as make the transition to the declarative
modeling paradigm easier.

Deployment
Once the progress bar hits 100%, the designer can be sure that
there is at least one path towards completion of a dialogue.
They can then proceed to build their bot.

• Generate and Visualize Dialogue Tree Once a solution
is guaranteed, the bot designer can generate the entire
dialogue tree and visually inspect it to better understand
the dependencies in the domain and identify unmodeled
constraints or possible undesired dialogue patterns.

• Chat with the Bot The designer can also chat with the bot
directly and trace the progress of the dialogue along the
visualized tree. This provides a powerful debugging tool
towards further refinement of the bot specification.

• Deploy to Watson Assistant Finally, the designer can de-
ploy the bot directly to Watson Assistant2 – this compi-
lation is a good way to appreciate the massive scale-ups
achieved in the complexity of the bot with respect to the
complexity of the specification.

Supporting AI Technologies
The MAi back-end compiles this specification into two forms:
(1) an abstraction of the declarative planning process that a
blackbox planning can solve, producing the entire dialogue
tree; and (2) the configuration that is required for deploy-
ment of the dialogue agent (on the executing agent, Hovor),
including elements such as the example utterances to de-
tect user responses and cloudfunction endpoints. The AI
components in MAi and Hovor are primarily built around
technologies from the AI planning community.

MAi Back-end
– The planning model of the bot is realized through a non-

deterministic planner (Muise, McIlraith, and Beck 2012).
This allows for modeling of complex dialogue patterns and
construction of large dialogue trees in a declarative fashion
by being able to describe multiple possible outcomes of an
action as described before. Details of this representation
are outside the scope of this discussion.

– The meta-writer uses (Ramırez and Geffner 2009) to com-
pile the domain writer’s actions on MAi into observations
that can be compiled into a meta-planning problem, as
described before. It uses Fast-Downward (FD) (Helmert
2006) as the underlying planner.

Hovor Front-end
As we mentioned before, the non-deterministic planner plans
with all possible outcomes of an action while generating the
complete dialog tree. However, during execution, only one
of these outcomes occur. The realization of an action in im-
plementation is done automatically from the specification in
the form of determiners which determine which outcome has
occurred. For dialogue actions, the determiners rely heavily
on natural language processing services from Watson Assis-
tant. Hovor orchestrates this entire process and situates the
bot in the right location in the dialogue tree. More details of
the orchestrator can be found in (Muise et al. 2019).

Attachment https://ibm.box.com/v/mai-icaps-slides

2https://www.ibm.com/cloud/watson-assistant/



References
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Elsevier.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Metz, R. 2018. Microsoft’s neo-Nazi sexbot was a great
lesson for makers of AI assistants. https://goo.gl/
TF8DQx. MIT Technology Review.
Muise, C.; Vodolan, M.; Agarwal, S.; Bajgar, O.; and Las-
tras, L. 2019. Executing Contingent Plans: Challenges in
Deploying Artificial Agents. In AAAI Fall Symposium on
Integrating Planning, Diagnosis, and Causal Reasoning.
Muise, C.; McIlraith, S.; and Beck, C. 2012. Improved Non-
Deterministic Planning by Exploiting State Relevance. In
ICAPS.
Ramırez, M., and Geffner, H. 2009. Plan Recognition as
Planning. In IJCAI.
Sreedhar, K. 2018. What it takes to build enterprise-class
chatbots. https://goo.gl/fRDkDn. Chatbots.


