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Abstract

In this paper, we present TraceHub - a platform that con-
nects new non-trivial state-of-the-art time-series analytics
with datasets from different domains. Analytics owners can
run their insights on new datasets in an automated setting to
find insight’s potential and improve it. Dataset owners can
find all possible types of non-trivial insights based on lat-
est research. We provide a plug-n-play system as a set of
Dataset, Transformer pipeline, and Analytics APIs for both
kinds of users. We show a usefulness measure of generated
insights across various types of analytics in the system. We
believe that this platform can be used to bridge the gap be-
tween time-series analytics and datasets by significantly re-
ducing the time to find the true potential of budding time-
series research and improving on it faster.

Introduction
The ubiquity of temporal data across disciplines has drawn
the attention of researchers over the last few decades. For-
mally, (Brockwell and Davis 1986) describes time series as
a series of observations xi, where each observation x corre-
sponds to a specific time t. In this paper, we focus on dis-
crete, multivariate time series.
TraceHub is a playground where separate analytics

and dataset owners can plug in time-series analytics and
datasets as APIs. The system then runs automated trans-
former pipelines to generate insights from plugged in ana-
lytics against the datasets, allowing dataset owners to access
new analyses and enabling analytics owners to find new use
cases and inspiration for model improvement. TraceHub
also reports the usefulness of the generated insights.

Time-series data has been studied extensively across the
fields of predictive analysis, classification, anomaly detec-
tion, clustering, and temporal data mining. The abundance of
unlabeled data has precipitated a need for unsupervised ap-
proaches like clustering time series which aims to learn the
distribution generating given data point, avoiding assump-
tions between time series (Khaleghi et al. 2016).

While the above approach tackles unsupervised time se-
ries data, the insights generated are not easily interpretable,
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reducing their worth to dataset owners. To best demonstrate
TraceHub’s value to both analytics and dataset owners, we
present in this paper a use-case focusing on a recent ana-
lytics that generates easily interpretable contrastive explana-
tions between two groups of events in data using its temporal
properties (Kim et al. 2019).

Architecture
TraceHub’s architecture consists of three main compo-
nents : Data loaders, Transformer Pipelines and Analyt-
ics. The system offers APIs to plug in a custom dataset,
transformer or analytics. Figure 1 shows the architecture
overview.

Data Loaders TraceHub loads data by automatically
detecting the type of values. It is then represented as traces
where each trace is a sequence of events in time. The split-
ting of data into traces happens based on a certain attribute
of the data specified by the user.

Transformer Pipelines TraceHub comes with some
standard out-of-the-box data transformers like one-hot en-
coding, missing value handling, quantiling, binarizing col-
umn, etc. The Transformer API of TraceHub also allows
the user to define a custom transformer performing trans-
formation to traces. The system automates the transformer
pipeline by suggesting the applicable ones on the traces. The
user can then choose which of the applicable transformers to
apply.

Analytics After the transformer pipeline is completed, the
resulting output of traces is fed to analytics which then gen-
erates insights along with a usefulness score of it.

Evaluation
In this section, we validate and evaluate the capabilities of
TraceHub on a simulated business process dataset of a
loan processing workflow. 1

Simulated Loan Application Dataset
We simulate a simplified loan application workflow to serve
as a demonstration of TraceHub’s capabilities. Each loan

1We thank Vatche Isahagian, IBM Research for the dataset.



Figure 1: TraceHub architecture of dataset, transformers and analytics APIs

application is characterized by the loan type: {Medical,
Vacation, Vehicle}, the expertise level of the agent:
{Skilled, Novice}, and consists of the following
events: 1) Receive: A new application is submitted by
the user, 2) Evaluate: An assessor (agent) evaluates the
application, 3) Gather: The agent decides to gather ad-
ditional documents for the application, and 4) Decision:
The agent either approves or denies the application.

An ordered occurrence of these events gives the dataset
its time-series characteristics, thus making it amenable for
analysis through TraceHub .

To serve as ground truth, we inject two distinct agent be-
haviors in the data: 1) A novice agent follows a simple work-
flow of receive, evaluate, and decide, and 2) A skilled agent
tends to analyze the applications more carefully, and asks for
more information encoded as the Gather step.

Insight generation through TraceHub
In this section, we walk through the entire process of gener-
ating insights through TraceHub .

Data loading: Since the loan application dataset is in the
form of tabular data, we use the TabularData loader
within TraceHub package to load it. Post data loading,
we generate the set of traces by splitting the data on its
application id column.

1 loader = TabularData()
2 data = loader.load(data_path="dataset.csv")
3 setoftraces = TraceSplit().split(data, "appid")

Transformer pipelines: TraceHub allows identification
of applicable transformers on the data by simply iterating
through the list of transformers and checking for their appli-
cability. The user can then decide to apply a certain trans-
former using its transform function.

1 applicable_tfs = [tf for tf in transformers_list
2 if tf.applicable(setoftraces)]
3 applicable_tfs[i].transform(setoftraces, *args)

Insight generation: With the data ready for anal-
ysis, all applicable analytics can be queried through
the applicable ts analytics function of
tracehub.analytics subpackage. Any desired
analytic method can then be applied using its apply
method.

1 analytics = applicable_ts_analytics(setoftraces)
2 analytics[i].apply(setoftraces)

The results of contrastive LTL explanation of (Kim et al.
2019) between two groups of loan application decision ac-
cept and reject are:

1 1. Formula: response: (activity_gather,agent_skilled),
(agent_skilled,duration_6.0)

2 Meaning: If ("activity_gather") occurs, ("agent_skilled
") eventually follows AND If ("agent_skilled")
occurs, ("duration_6.0") eventually follows

3 Accuracy: 0.874
4 --------------------------------------
5 2. Formula: until: agent_novice , duration_4.0
6 Meaning: ("agent_novice") has to be true until ("

duration_4.0") eventually becomes true
7 Accuracy: 0.77

The duration 4.0 proposition refers to a simple
workflow where the event Gather does not occur, whereas
duration 6.0 proposition refers to the workflow where
the Gather event occurs.

The first response captures the Skilled agent’s behav-
ior, where the agent asks for more information through the
Gather event before accepting an application, thus mak-
ing the process six steps long. The second response cap-
tures the Novice agent’s behavior, where the agent follows
a simple four step workflow before accepting an application.
The above two insights extracted through TraceHubmatch
perfectly to the injected ground truth agent behaviors in the
data, and provide an evidence of TraceHub ’s capabilities
to extract non-trivial insights from data. The accuracy mea-
sures of 0.874 and 0.77 are indication of usefulness of the
generated insights from TraceHub
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